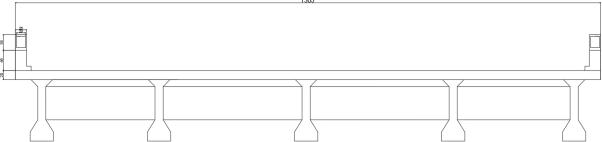


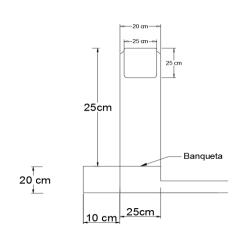
INSTITUTO DE INGENIERÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

N° de convenio	IISGCONV-118-2016	Fecha de reporte	02/08/2017		
Formato	Inspección de puentes carreteros	Enfoque	Estructural		
Cliente	Centro Nacional de Prevención de Desastres	Elaboró	Ing. David Flores Vidriales		
Tramo carretero	Tapachula – Arriaga				

Nombre del puente	Huixtla			
Tipo de puente	Viga	Material de superestructura	Concreto Presforzado	
Fecha de construcción		Material de subestructura	Concreto	
Localización (Latitud)	15.15008333	Localización (Longitud)	-92.45013889	

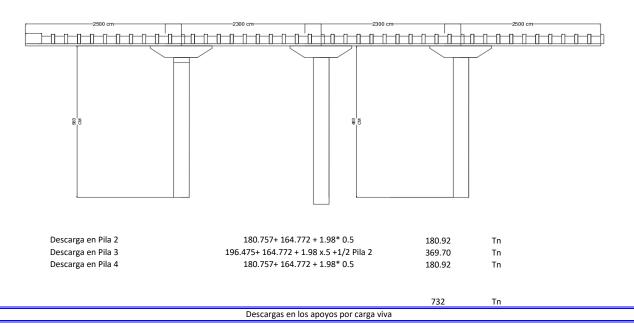
Revisión de estabilidad estructural del puente Huixtla


Pila central punte novillero

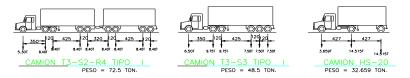


El presente informe trata de la estabilidad estructural del puente Hiuxtla localizado en el estado de Chiapas. El puente Huixtla es un puente vehicular que cruza un río, el puente cuenta con un cuerpo constituido por dos estribos, y 3 pilas de concreto reforzado con cabezales, cuenta con dos claros centrales de 23 metros y dos claros en los extremos de 25 metros, cuenta con un sistema de vigas AASHTO y diafragmas de concreto.

Vigas y diafragmas							
AASHTO	IV	Area	4,974	cm^2			
		Peso x m	1,194	Kg/m			
		N° de piezas	6				
VIGA AASHT	O TIPO IV						
			Datos				
-		Longitud d	e claro 1	23	m		
<u>├</u> 50) cm—-	Peso de viga	s por claro	165	Tn		
20 cm							
15 cm		Longitud	de claro	25	m		
		Peso de viga	s por claro	179	Tn		
20 an 20 an 66	3 cm						
DIAFRA	GMAS		Volumen	0.28	m^3		
			Peso	660	Kg		
			N° de piezas	3			
	110 cm		Peso de diafr	agmas por claro	2	Tn	

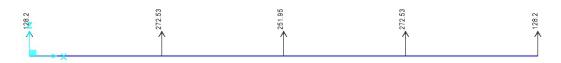


Losa , carpeta, banqueta y parapetos



	Losa		
Area	.2 X 12.}	2.54	m^2
Peso	2400 x 2.54	6,096	kg/m
	Carnota		
	Carpeta		
Area	.05 X 12.7	0.64	m^2
Peso	2200 x 0.635	1,397	kg/m
	Banqueta		
Area	.35 x .2	0.07	m^2
Peso	2400 x 0.07	168	kg/m
1 030	2100 x 0107	100	1,9/111
	iga de parapetos		
Area	.25 x .35	0.0625	m^2
Peso	2400 x 0.0625	150	kg/m
	Parapetos		
Area	.25x.2x.2	0.01	m^2
Peso	2400 x 0.01	24	kg/m
		= -	-
N° de pa	rapetos 2	48	kg/m
Peso por	metro lineal de tablero	7,859	kg/m
1	Peso por claro 1	181	Tn
1	Peso por claro 2	196.475	Tn

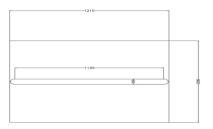
Descargas en los apoyos



La revisión del puente 5 d eMayo se hizo con los camiones HS-20, T3-S3 Y T3-S2-R4

De acuerdo a las lineas de fluencia las reacciones en cada uno de los apoyos es

Estribo 1	128	Tn
Descarga en Pila 2	272	Tn
Descarga en Pila 3	272	Tn
Descarga en Pila 4	2752	Tn
Estribo 2	128	Tn


*Lineas de influencia elaborados con CSI BRIDGE 2017

Peso de la subestructura

Volumen del Cabeza		
13.3+11.3 x 1 x.5	12.30	m^2
13.3*1	13.3	m^2
Area	25.60	m^2
Volumen del Cabezal	15.36	m^3
Poso do caboza	ı	26.06

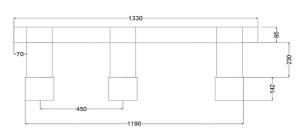
Cabezal

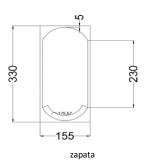
Volumen del pilas 1 y 5		
11.3*.6*3.63	13.57	m^3
Peso de pilas 2 y 4	32.57	Tn

Volumen de zapatas 12.1x9.6x1.3 Peso de zapatas

151.01 m^3 362.42 Tn

Tn


Tn


Columna y zapata

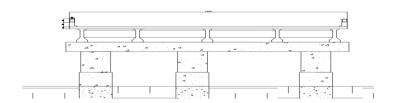
Volumen del Cabeza		
13.3x1.55	20.62	m^2
Area	20.62	m^2
Volumen del Cabezal	19.58425	m^3
Peso de cabeza	47.00	

Cabezal

Columnas

Volumen del pilas
1.55*3.3*2.3*3
Peso de pila 3

35.29 m^3 84.70 Tn

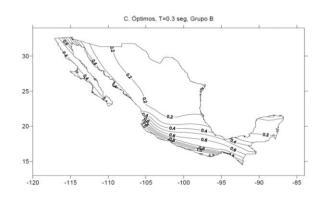

Volumen de zapatas

3.3*1.55*1.42*3 Peso de zapatas

21.79 m^3 52.30 Tn

Peso de subestructura 2	
184 00	Tn

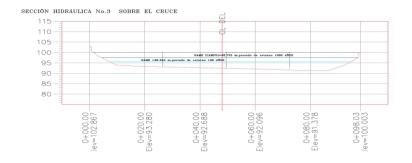
Peso de subestructura 1 w 431.86 Tn



Peso de suelo sobre la zapata

Inexistente zapata expuesta

Fuerzas de sismo para ánalisis del claro central



Metodo sísmico estatico

			Metodo sísmico e	statico			
DATOS							
Wcm superestructur	ra tablero	W1=	369.70	Tn	Descar	ga en Pila 4	
Wcm subestructura m	itad de pila	W2=	431.86	Tn			
Rgion sismica	D			Q	2		
Coeficiente	0.8						
Factor de importancia	1.5						
V= Wcm x C							
V tablero	369.70	Tn	Ci	0.6	=	110.91	Tn
V pila	431.86	Tn	Cmax	1.2	=	518.23	Tn

Empuje provocado por el río

Revisión por volteo y deslizamiento

Momentos resistentes para pila central						
Elemento W Y M						
Tablero	196.48	17.795	3,496.27			
Carga Viva	272.00	17.795	4,840.24			
Cabezal	47.00	4.195	197.17			
Pila	84.70	2.5	211.76			
Zapata	52.30	0.71	37.13			
Sumas	456.00		8,782.58			
Facto	Factor de seguridad de volteo					

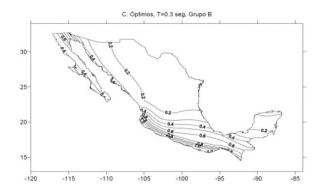
Factor de seguridad de volteo 2.58
OK

Momentos actuantes para pila central					
Elemento	W	Y	M		
E.Tablero	110.91	17.795	1,973.62		
E. Sismo Pila	518.23	2.5	1,295.57		
E. Río	85.46	1.6	136.74		
	0.00	0	0.00		
Sumas	714.60		3,405.93		

μ=

0.55

Combinaciones de carga


Α	D + L + SF	D	Carga muerta
В	D + SF	L	Carga viva
С	D + SF + EQ	SF	Flujo de la corriente
		EQ	Sismo

Volteo						
Caso de carga	MR	MA	MR/MA	Evaluación volteo		
А	8,782.58	136.74	64.23	OK		
В	3,942.34	136.74	28.83	OK		
С	3,942.34	3,405.93	1.16	No pasa		

		Deslizamier	nto	
Caso de carga	FR	FA	MR/MA	E. Deslizamiento
Α	358.86	85.46	4.20	OK
В	209.26	85.46	2.45	OK
С	380.48	714.60	0.53	No pasa

Fuerzas de sismo para ánalisis para pila 1

			Metodo sísmico es	statico			
DATOS							
Wcm superestructur	a tablero	W1=	369.70	Tn	Descar	ga en Pila 2	
Wcm subestructura mi	itad de pila	W2=	184.00	Tn			
Rgion sismica	D						
Coeficiente	0.8						
Factor de importancia	1.5						
V= Wcm x C							
V tablero	369.70	Tn	Ci	0.6	=	221.82	Tn
V pila	184.00	Tn	Cmax	1.2	=	220.80	Tn

Empuje provocado por el río

$$\rho = C_D \frac{\gamma V^2}{2} \times 10^{-6}$$

 $FE_{rio} = \rho A$

Cd 0.7

A Fe 5.4405 32.27 6.365385

Ymax

1.17

Tn

m^2

γ 1000

1000 kg/m^3 3.77 m/s

p 0.00497452

Revisión por volteo y deslizamiento

Momentos resistentes para pila central						
Elemento	Elemento W Y					
Tablero	180.76	7.38	1,333.99			
Carga Viva	272.00	7.38	2,007.36			
Cabezal	36.86	5.93	218.60			
Pila	32.57	3.115	101.46			
Zapata	362.42	0.71	257.32			
Sumas	703.86		3,918.73			
Facto	1.65					

ОК

Momentos	actuantes	para	pila	central

Elemento	W	Υ	M
E.Tablero	221.82	7.38	1,637.01
E. Sismo Pila	220.80	3.115	687.80
E. Río	32.27	1.6	51.63
	0.00	0	0.00
Sumas	474.89		2,376.44

Combinaciones de carga

Α	D + L + SF
В	D + SF
С	D + SF + EQ

D Carga muerta
L Carga viva
SF Flujo de la corriente
EQ Sismo

 $\mu = 0.55$

	Volteo						
Caso de carga	MR	MA	MR/MA	Evaluación volteo			
Α	3,918.73	51.63	75.91	OK			
В	1,911.37	51.63	37.02	OK			
С	1,911.37	2,376.44	0.80	No pasa			

		Deslizamie	nto	
Caso de carga	FR	FA	MR/MA	E. Deslizamiento
Α	486.54	32.27	15.08	OK
В	336.94	32.27	10.44	OK
С	612.61	474.89	1.29	No pasa

*Nota no se considera la cimentación debido a que no se tienen datos

INSTITUTO DE INGENIERÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

N° de convenio	IISGCONV-118-2016	Fecha de reporte	02/08/2017	
Formato	Inspección de puentes carreteros	Enfoque	Hidraulico	
Cliente	Centro Nacional de Prevención de Desastres	Elaboró	Ing. David Flores Vidriales	
Tramo carretero	Tapachula – Arriaga			

Nombre del puente
Tipo de puente
Viga
Material de superestructura
Concreto Presforzado
Fecha de construcción
Localización (Latitud)

Calculo de socavación general por el método de Lischtvan-Levediev

Estrato 1 (0-.3 m)

T 1 1	
Tipo de suelo	Cohesivo

γS	1.67	Tn/m^3
Dm	0.84	mm
Х	0.302857248	
Q	825	m^3/s
В	96	m
Α	222.55	m^2
Vm	3.71	m/s
Но	3.25	m
β	0.99	
μ	0.95	
bi	11.3	m
С	3	
θ	0.00	
N	5	

		m^3/s
Hm	2.63	m
Tr	100	años

Ancho efectivo

Be = (B – bi)Cosθ – (c + z – N)asenθ

Be 84.70

Coeficiente de sección
$$\alpha = \frac{Qd}{BeHm^{5/3}\mu}$$
 α 2.05

$$H_s = (\frac{\alpha H_0^{\frac{5}{3}}}{0.60\beta \gamma_a^{1.18}})^{1/(1+x)}$$

Hs 13.71

Socavac	ión general esperad	la
Soc = Hs- Ho	10.46	m

*Debido a que la socavación general esperada excede la profundidad del primer estrato, se continua con el estudio de socavación para el segundo estrato.

Estrato 2 (.3- 2 m)

Tipo de suelo	Cohesivo	
γS	1.68	Tn/m^3
Dm	2	mm
Х	0.30161516	
Q	825	m^3/s
В	96	m
Α	222.55	m^2
Vm	3.71	m/s
Но	3.25	m
β	0.99	
μ	0.95	
bi	11.3	m
С	3	
θ	0	
N	5	

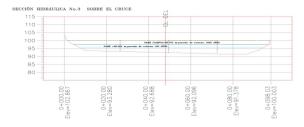
Hm 2.63 m	Qd	825	m^3/s
Tr 100 años	Hm	2.63	m
	Tr	100	años

Ancho efectivo

Be = $(B - bi)Cos\theta - (c + z - N)asen\theta$

Be 84.70

Coeficiente de sección
$$\alpha = \frac{Qd}{BeHm^{5/3}\mu}$$
 α 2.05


$$H_s = (\frac{\alpha H_0^{\frac{5}{3}}}{0.60\beta {\gamma_a}^{1.18}})^{1/(1+x)}$$

Hs 6.26

Socavación general esperada				
Soc	= Hs- Ho	3.01	m	

Socavación general esperada total
Soc 3.31 m

Perfil antes de la socavacióm

^{*} Si el segundo estrato es continuo la socavación general esperada sera igual a 3.31 metros.

INSTITUTO DE INGENIERÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

10000					
N° de convenio	IISGCONV-118-2016 Fecha de reporte 02/08/2017				
Formato	Inspección de puentes carreteros Enfoque Hidraulico				
Cliente	Centro Nacional de Prevención de Desastres Elaboró Ing. David Flores Vidriale				
Tramo carretero	Tapachula – Arriaga				

Nombre del puente
Tipo de puente
Viga
Material de superestructura
Fecha de construcción
Localización (Latitud)

Nombre del puente
Viga
Material de superestructura
Concreto
Presforzado
Material de subestructura
Concreto
Localización (Longitud)
-92.45013889

Calculo de socavación por el método de Yaroslavtziev

Pila central

Tipo de suelo Cohesivo

A'	556	m^2
Q	825	m^3/s
Kf	8.5	Planta tipo IV
Kv	0.75	
Kh	1.05	
e	0.6	
D85	0.195	m
V	1.48	m/s
B1	12.10	
θ	0.00	
b	12.1	m
I	9.6	m

Ver Anexo b

H/b1	0.27
v^2/(g*b1)	0.02

$$y_s = k_f k_v (e + k_H) \frac{V^2}{g} - 30d_{85}$$

Ys 2.36 r

Calculo de socavación por el método de HEC 18

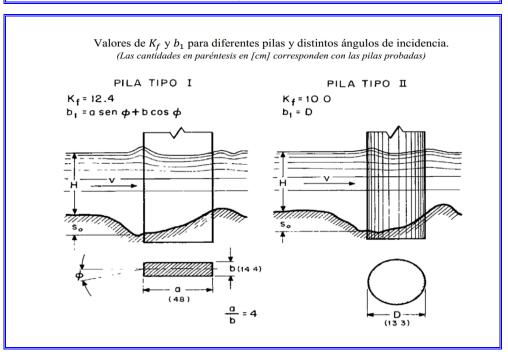
k1 1 1 1.00 k3 1.1 k4 0.7 F 0.0231

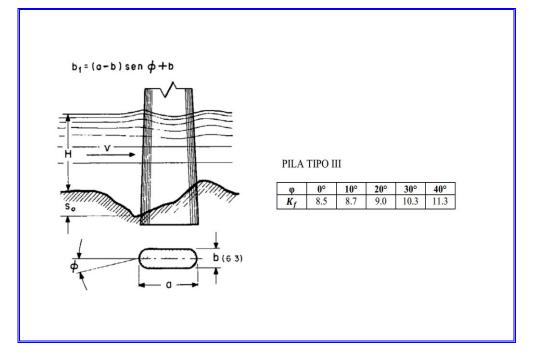
$$k_2 = (\cos \alpha + L/b.sen\alpha)^{0.65}$$

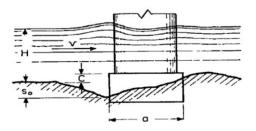
$$\frac{V}{\sqrt{g.y_n}} = F$$

$$y_{smax} = 2 k_1 k_2 k_3 k_4 b^{0.65} y_n^{0.35} F^{0.43}$$

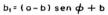
3.32

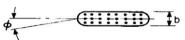




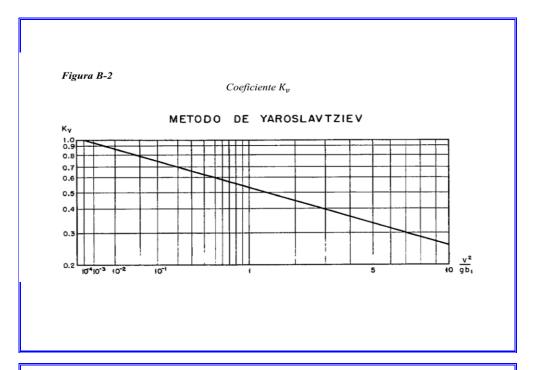

 N° de convenio
 IISGCONV-118-2016
 Fecha de reporte
 02/08/2017

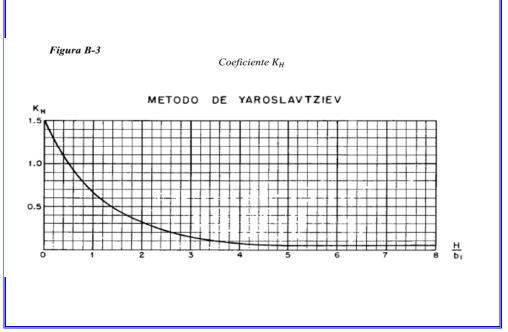
Coeficientes para socavación local


 $b_1 = (a - b_0)$ sen $\phi + b_0$ para C/H \leq 0.3 $b_1 = a$ sen $\phi + b_0$ cos ϕ para C/H > 0.3 en donde $b_0 = b + (b_2 - b)$ C/H


PILA TIPO IV

φ	Coeficiente K _f					
		C/H				
	0	0.2	0.4	0.6	0.8	1.0
0	8.5	9.9	11.5	12.1	12.4	12.4
10	8.7	10.1	11.6	12.1	12.4	12.4
20	9.0	10.3	11.7	12.4	12.4	12.4
30	10.3	11.3	12.1	12.4	12.4	12.4
40	11.3	12.0	12.4	12.4	12.4	12.4





PLANTA TIPO VII

φ	Coeficiente K _f t/b					
	0	2	4	8	12	
0	8.5	7.5	6.76	5.98	5.4	
10	8.7	7.7	6.80	6.10	5.5	
20	9.0	7.8	7.10	6.20	5.6	
30	10.3	8.6	7.50	6.30	5.7	
40	11.3	9.2	7.90	6.70	5.9	

N° de convenio	N° de convenio IISGCONV-118-2016		02/08/2017

Coeficientes para socavación local

Tabla 2.5Factor de forma del pilar k₁

ractor de forma dei pitar k			
Forma del pilar	K ₁		
Nariz cuadrada	1.1		
Nariz redonda	1.0		
Nariz circular	1.0		
Nariz puntiaguda	0.9		
Grupo de cilindros	1.0		

Tabla 2.7
Factor de corrección por rugosidad general del cauce

Características del fondo del cauce	Altura de dunas (m)	K ₃	
Aguas limpias	-	1.1	
Fondo plano y antidunas	-	1.1	
Dunas pequeñas	3 > h < 0.6	1.1	
Dunas medianas	9 > h > 3	1.1 1.2	
Dunas grandes	h > 9	1.3	

Simbolo	Descripción
Α	Area hidraulica e
α	Coeficiente de sección dependiente de las caracteristicas hidraulicas
Á′	Area despues de la socavación general
В	Longitud total de puente
Ве	Ancho efectivo
Bi	Ancho de la pila
С	Numero de pilas o entribos dentro y en los limites de B
Dm	Diametro promedio de particulas
g	Aceleración de la gravedad
Hm	Tirante medio de la sección
Но	Tirante antes de la erosión
Hs	Socavación general esperada
Kf	Coeficiente de forma
Kh	Coeficiente de profundidad de corriente
Kv	Coeficiente de angulo de incidencia
N	Número de pilas o estribos considerados al tomar a c
Q	Gasto
Qd	Tirante de diseño
Tr	Tiempo de retorno
Vm	Velocidad media calculada
X	Variable que depende del peso volumetrico del suelo Higuera y perez 1989
β	Coeficiente dependiente de la frecuencia de la avenida (Ver talab 1)
γS	Peso volumetrico del suelo
θ	Ángulo que forma la dirección del flujo con el eje longitudinal de las pilas
μ	Coeficiente de contracción (Ver tabla 3)
d85	Tamaño de particula en la cual quedan retenidas el 85% de las particulas de suelo
k1	Factor de forma del pilar
k2	Factor por el ángulo de ataque
k3	Factor de correción por rugosidad del fondo
k4	Factor por graduación del material en el lecho
F	Numero de froude

•			
1 •			
•			
*			
*			
•			
r			
•			
r			
r			
•			
r			
•			
•			
r r			
•			
r			
r			
•			
· ·			
•			
r			
•			
r			